Informazioni personali

Cerca nel blog

Translate

sabato 8 marzo 2025

 

Managers and AI: Will There Truly Be Only One Left Standing?

🤖🚀 Managers vs. AI: Will There Really Be Only One Left?
Are you already weary of doomsday predictions proclaiming, “AI is going to replace us all!”? 😱 And amidst the digital revolution, have you stopped to wonder: “Hang on, what about all those managers?”
If you’ve pondered this conundrum while sipping your morning cuppa (or found yourself side-eyed by an algorithm lurking near the biscuit tin 🍪☕), my latest article is precisely what you need!
I’ve tried to clarify (and poke a bit of fun at) how Artificial Intelligence may impact the various “types” of managers: from those who merely carry out orders (yawn!) to those who thrive on strategic vision and cunning brilliance. 💡
Keen to find out which category you fit into—and whether your job is perched perilously close to the digital scrapheap?
👉 Click through for a chuckle (but not too much) at AI’s corporate invasion—and do let me know your thoughts!
So, tell me: AI🔮 or humanity🤝—which side are you on?

These days, one hears a great deal of chatter—often somewhat misguided—about Artificial Intelligence (AI). Among the most popular doom-and-gloom refrains, especially from those who haven’t truly grasped what AI is (yet still fervently decry it), is the notion that AI is poised to make vast swathes of human jobs vanish overnight. Naturally, discerning exactly how much truth lurks behind such apocalyptic visions is tricky, if not akin to reading tea leaves (though we Brits are quite fond of tea in any context). Still, it’s undoubtedly the case that AI will have a significant role in reducing positions where human competence—particularly of a higher-order variety—isn’t strongly required. Put another way: the less crucial the distinctively human skill set, the greater the likelihood that some clever AI algorithm might swoop in and do the job instead (possibly wearing a tiny digital bowler hat while it’s at it).

History teaches us that automation often shrinks the arena for roles involving less specialised skills (Brynjolfsson & McAfee, 2014). Yet, it has rarely led to a net disappearance of work as such. Rather, it has typically brought about job transformation and upskilling. As such, the main risk associated with AI isn’t that the entire global workforce will suddenly end up in a queue for the dole—but that those jobs requiring less human expertise (or offering minimal added value) may be replaced by a more efficient, cost-effective machine-based solution.

Now, amidst all this talk about AI’s looming effects on employment, there’s a curious gap in our discussions: we rarely speak of how these changes might affect the managerial echelon. It’s possible that we avoid the subject out of deference, flattery, or sheer inertia; but the reality is that the manager—whether occupying a junior, middle, or top-level “C-suite” role—might well find themselves impacted by the rising wave of AI adoption.

So, is the manager at risk of being replaced by a chatbot or an algorithmic overlord? Or might a certain type of manager find a route to co-exist (maybe even flourish) alongside these digital wonders? Before we attempt to address those questions, we need to clarify what exactly we mean by “manager.” In the paragraphs below, you’ll discover a rather tongue-in-cheek classification of managers into three groups: the “functional” manager, the “good” (proactive) manager, and the “great” (visionary) manager. We shall then examine, with a spot of British humour, how each group might stand up—stiff upper lip and all—against the onslaught of AI.

Defining the Manager

A manager, in broad terms, is someone charged with coordinating and directing people, resources, and processes within an organisation in order to achieve specific goals (Fayol, 1949; Mintzberg, 1973). This typically involves planning, organising, leading, and controlling activities and projects, to ensure that everything remains congruent with the firm’s overarching strategy.

“I made that slide myself—and then I wonder why they never asked me to run another manager training session.”

From time immemorial, management courses have hammered home the point that a manager shouldn’t merely “command and control” but act as a facilitator and guide. Yet, there’s a crucial distinction among managerial types, easily distilled into three categories:

“A Manager does what the company tells him/her to do”

  • This is what we might call the functional manager.
  • He or she straightforwardly follows orders: the boss says “Jump,” and they say “How high?” (and if the boss forgets to say “Jump,” they stand perfectly still).
  • They tend to be diligent at adhering to established procedures but typically lack any real spark of initiative or strategic insight.

“A Good Manager does what the company wants him/her to do”

  • This manager is proactive.
  • They understand the organisation’s goals on a deeper level, align themselves with the firm’s values, and anticipate the needs of their team.
  • They don’t just wait for instructions but go beyond them, showing initiative and effectively motivating those under their charge.

“A Great Manager does what the company needs him/her to do”

  • This is the manager who’s strategic and visionary.
  • They’re not content merely to tick boxes or deliver on short-term expectations; rather, they identify what the firm truly requires (and sometimes that means going against the grain of explicit demands).
  • They promote innovation, spot impending market challenges, nurture talented individuals, and forge sustainable value over time (Kotter, 1990; Bass & Avolio, 1993).

In essence, the distinction between these three sorts of managers lies in moving from a reactive stance (merely doing what one is told) to a proactive one (interpreting expectations and acting effectively), eventually reaching a strategic and visionary level (discovering and creating what the firm really needs).

Managers vs. Artificial Intelligence

The “Functional” Manager: The Most Exposed

The manager who does nothing but exactly what they’re told seems particularly vulnerable to being replaced by an AI system. Let’s be honest: if your day-to-day job is simply to pass on instructions (something like “If Boss says A, do A; if Boss says B, do B”), then a basic decision-tree algorithm could quite easily replicate that. Indeed, it might do so without getting miffed about having to work extra hours, or popping out for coffee breaks, or complaining that someone else ate all the biscuits (that’s what we are here for!).

Such roles are quite common in the broad swathe of lower to mid-level management, where the manager’s function is largely to forward messages and ensure compliance with company policy. Just imagine turning up to work one day and discovering that your new line manager is an AI bot with precisely zero sense of humour, though it’ll never scold you for being five minutes late if it’s not programmed to notice timekeeping. On the bright side, you’ll at least be spared the dreaded Monday morning pep talk.

The “Good” (Proactive) Manager: Not Entirely Safe

Now, you might suppose that the second category of manager—the helpful, proactive one—would be safe, but that might be a tad optimistic. Many managerial tasks, after all, are about interpreting corporate strategy and sifting through signals, some explicit and some implied, to glean what people truly want. As we know, corporate politics is a labyrinthine world brimming with interest groups, subtle alliances, hidden agendas, and that beloved “corporate jargon” that often says one thing while hinting at another.

Modern Large Language Models (LLMs)—like GPT-4, Bard, and others—are already pretty good at textual interpretation and context understanding (Brown et al., 2020). If the company’s policies and strategic goals are fed into a well-trained AI system, it might interpret them with surprising dexterity, thereby taking over a significant chunk of that “translational” labour once performed by the manager who reads between the lines of the board’s pronouncements.

Consequently, a manager whose main skill is “just” interpreting instructions and turning them into action points might see their advantage erode. Some might devolve into little more than advanced “press this button when told” operators. Of course, a thoroughly incompetent manager might be replaced by AI entirely (though at least the AI probably wouldn’t pinch your favourite stapler).

The “Great” (Visionary) Manager: Facing Some Risks, Too

At first glance, you might think the third category—the truly visionary, strategic manager—would be the most secure. Indeed, such a manager’s value is found in intuition, creativity, forging novel connections, and shaping new paths forward that no one else might see. AI, meanwhile, is primarily about pattern recognition, working from existing data sets, or using trained models to extrapolate from known parameters (Agrawal, Gans & Goldfarb, 2018).

That said, even visionary managers aren’t entirely immune to the potential pitfalls. Often, the manager and the business owner might not be the same person: in some companies, top managers do not own the enterprise but are hired to lead it. If the owners decide to rely on an AI system—trusting it to churn out “unimpeachable” solutions based on advanced analytics—they might become suspicious of any maverick manager who proposes a direction that diverges from the AI’s projections (especially if they’ve invested half the annual budget in that newfangled system and feel the pressure to prove it was money well spent).

Nevertheless, in a scenario of wise and balanced implementation, AI can serve as the Great Manager’s best friend, augmenting their capacity to research data quickly and verify strategic hypotheses at breakneck speeds (Shrestha, Ben-Menahem & von Krogh, 2019). The synergy lies in letting the AI handle the computational heavy lifting while the manager focuses on empathy, leadership, big-picture thinking, and persuading everyone else to get on board (possibly with well-placed references to the wonders of a good cuppa in the break room).


Automation: Threat or Opportunity?

The discourse around AI’s potential to displace managerial roles is part of a broader conversation on the automation of work. Historically, each new wave of technological innovation has rendered certain tasks obsolete, yes, but it has also created brand-new professions that were previously unthinkable (Autor, 2015). According to the World Economic Forum (2020), AI and automation could produce millions of new roles in the medium term (particularly in highly knowledge-intensive fields like data science or advanced project management) while making an equivalent number of simple, repetitive tasks redundant.

For managers, this translates into a pressing need for reskilling and upskilling—in other words, training oneself in areas that AI can’t easily replicate, at least for the foreseeable future. Some examples of these skills include:

  • Empathetic Leadership: The ability to interact sensitively and supportively with people, understanding emotional dynamics within a team (Goleman, Boyatzis & McKee, 2002).
  • Creativity and Strategic Innovation: The knack for thinking outside the box, embracing bold new ideas, and sniffing out emergent opportunities in the market.
  • Critical Thinking and Complex Problem-Solving: Handling fluid, ambiguous situations that call for nuanced approaches, far beyond the scope of a formulaic solution.
  • Change Management: Orchestrating organisational transitions and transformations, aligning diverse teams and stakeholders, providing a compelling vision, and dealing with the inevitable pockets of resistance (Kotter, 1996).

Conclusions

The rise of AI in the corporate world poses questions that go far beyond the potential elimination of repetitive tasks. On one hand, the so-called “functional” manager (the one who does nothing but re-transmit instructions) might indeed be at high risk of obsolescence. On the other hand, “good” and “great” managers—those with proactive mindsets and visionary leadership styles—retain a clear advantage, at least for the time being. Yet they, too, might see their roles reshaped if AI systems become ever more adept at internal decision-making processes.

As always, technology in itself is neither angelic nor demonic; its ultimate impact depends on how thoughtfully it’s introduced and how it’s used. We can confidently predict that the “least competent” strata of the workforce may bear the brunt of these changes, while those offering real human value—particularly in interpersonal relations and creative thinking—will still be in demand. Because let’s face it: no matter how sophisticated an AI might be, it won’t be able to replicate the intangible spark of human empathy, humour, or the delightfully awkward small talk at the water cooler (AI might well generate water cooler discussion points, but can it truly cringe at the boss’s pun the way we do?).

In the end, perhaps we ought not to ask: “Will it be the manager or the AI who’s left standing?” but rather: “How can the manager and the AI fruitfully collaborate?” The best hope for a successful future likely lies in synergy, with humans harnessing the computational muscle of AI while deploying our unique capacity for imagination, moral judgement, and that subtle emotional intelligence that algorithms haven’t quite cracked.

Finally, let’s not forget:

“For the manager who wants solutions, not extra headaches.”

“A manager that is not a proactive part of the solution is part of the problem.”

In other words, best not stand idly by. After all, you wouldn’t want a chatbot wearing your name badge next quarter, now would you?


Bibliographical References

  • Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press.
  • Autor, D. H. (2015). Why Are There Still So Many Jobs? The History and Future of Workplace Automation. Journal of Economic Perspectives, 29(3), 3–30.
  • Bass, B. M., & Avolio, B. J. (1993). Transformational Leadership and Organizational Culture. Public Administration Quarterly, 17(1), 112–121.
  • Brown, T. et al. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems (NeurIPS).
  • Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton & Company.
  • Davenport, T. H., & Kirby, J. (2016). Only Humans Need Apply: Winners and Losers in the Age of Smart Machines. Harper Business.
  • Fayol, H. (1949). General and Industrial Management. Sir Isaac Pitman & Sons.
  • Goleman, D., Boyatzis, R., & McKee, A. (2002). Primal Leadership: Realizing the Power of Emotional Intelligence. Harvard Business Press.
  • Harvard Business Review (2019). Artificial Intelligence for the Real World. Harvard Business Review, 97(1), 108–116.
  • Kotter, J. P. (1990). A Force for Change: How Leadership Differs from Management. Free Press.
  • Kotter, J. P. (1996). Leading Change. Harvard Business Review Press.
  • Mintzberg, H. (1973). The Nature of Managerial Work. Harper & Row.
  • Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2019). Organizational Decision-Making Structures in the Age of Artificial Intelligence. California Management Review, 61(4), 66–83.
  • van der Aalst, W. M. P., Bichler, M., & Heinzl, A. (2018). Robotic Process Automation. Business & Information Systems Engineering, 60(4), 269–272.
  • World Economic Forum (2020). The Future of Jobs Report. Geneva: WEF.

venerdì 7 marzo 2025

 

Managers ed AI: ne resterà uno solo?

🤖🚀 Managers VS AI: ne resterà uno solo?
Certo, avete già sentito la profezia apocalittica: “L’AI ci sostituirà tutti!” 😱 E nel bel mezzo di questa rivoluzione digitale, c’è chi si chiede… “E i manager che fine fanno?”
Se anche voi vi siete posti la stessa domanda mentre sorseggiate il caffè (o mentre l’ennesimo algoritmo vi ruba il posto alla macchinetta 🍪☕), allora il mio ultimo articolo fa proprio al caso vostro!
Ho cercato di fare chiarezza (e qualche risata) su come l’Intelligenza Artificiale stia impattando i diversi “tipi” di manager: da chi segue gli ordini alla lettera 😐 a chi invece vive di visione strategica 💡.
Curiosi di scoprire quale categoria siete… e se siete a rischio “rottamazione digitale”?
👉 Cliccate sull’articolo e preparatevi a ridere (ma non troppo) sulle sfide dell’AI nel nostro mondo aziendale!
Leggete, commentate e fatemi sapere: AI🔮 o umanità🤝 – chi vincerà?


Oggigiorno si parla spesso – talvolta a sproposito – di Intelligenza Artificiale (IA o AI, dall’inglese Artificial Intelligence). Uno dei luoghi comuni più diffusi, specialmente tra coloro che non hanno compreso a fondo cos’è davvero l’IA e ne enfatizzano i presunti pericoli, è che l’Intelligenza Artificiale causerà la scomparsa di numerosi lavori. È difficile stabilire quanto ci sia di vero in queste visioni apocalittiche. Tuttavia, è innegabile che l’IA avrà un impatto significativo su quelle mansioni in cui la competenza umana è limitata, o dove la standardizzazione e l’automazione possono portare maggiore efficienza.

La storia insegna che l’automazione riduce gli spazi per i lavori meno qualificati (Brynjolfsson & McAfee, 2014), ma ciò non ha mai comportato una diminuzione “assoluta” dei posti di lavoro: piuttosto, si è assistito a una loro graduale trasformazione e riqualificazione. Il rischio principale associato all’introduzione dell’IA, quindi, non riguarda tanto la “fine” di tutti i posti di lavoro, quanto la scomparsa o la profonda evoluzione di ruoli caratterizzati da una bassa componente di competenze distintive. In altre parole, quanto minore è il valore aggiunto offerto dall’umano in termini di creatività, giudizio complesso o empatia, tanto più elevata è la probabilità che quelle mansioni possano essere affidate a un sistema di IA (Davenport & Kirby, 2016).

Fra i ruoli lavorativi ritenuti potenzialmente “a rischio”, ve n’è uno che raramente viene approfondito nei dibattiti in tema di sostituzione tecnologica: la figura del manager, declinata in tutte le sue possibili sfaccettature, dal “basso” management al cosiddetto middle management, fino ai vertici “C-level” (CEO, CFO, CTO, ecc.). In molti casi, infatti, si dà per scontato che il manager debba per forza essere una figura insostituibile. Ma è davvero così? Oppure esistono aspetti della funzione manageriale che l’IA è già in grado di replicare, potenziando o sostituendo parzialmente il ruolo del manager?

Di seguito cercheremo di rispondere a queste domande, analizzando brevemente la figura del manager, suddivisa – in maniera volutamente semplificata – in tre tipologie: i “manager funzionali”, i “buoni manager” e i “grandi manager” (great manager). Successivamente, vedremo in che modo l’IA potrebbe intersecarsi con ognuna di queste categorie, generando potenziali rischi (o opportunità).


Definizione di Manager

Un manager è, in senso generale, una figura professionale responsabile di coordinare e dirigere persone, risorse e processi all’interno di un’organizzazione, al fine di raggiungere obiettivi specifici (Fayol, 1949; Mintzberg, 1973). Tra i compiti principali rientrano la pianificazione, l’organizzazione, la conduzione (leading) e il controllo di attività e progetti, assicurandosi che quanto svolto sia in linea con la strategia aziendale.

la slide è mia, poi mi chiedo perché non mi hanno fatto più fare corsi per manager

Da anni, nei corsi destinati alla formazione manageriale, si ripete che il manager di successo non si limita a “comandare” e controllare, ma agisce come facilitatore e guida. Tuttavia, esistono differenti livelli di maturità manageriale, che qui dividiamo in:

  1. Manager “funzionale”
  2. Buon manager (“proattivo”)
  3. Grande manager (“strategico e visionario”)

In sintesi, la principale differenza tra queste tre tipologie sta nel passaggio da un approccio “reattivo” (fare esattamente ciò che è richiesto) a uno “proattivo” (capire e tradurre le aspettative in azioni efficaci), fino ad arrivare a un approccio “strategico” (individuare e realizzare ciò di cui l’azienda ha effettivamente bisogno).


Manager vs. Intelligenza Artificiale

Il manager “funzionale” è davvero sostituibile?

Il manager che “fa solo quello che gli dicono di fare” è probabilmente il più esposto al rischio di sostituzione da parte di algoritmi e sistemi di IA. In fondo, per compiere funzioni meramente esecutive, basta un algoritmo adeguatamente addestrato che risponda a istruzioni del tipo:

“Se il capo dice A, fai A. Se il capo dice B, fai B. Se il capo non dice nulla, attendi il nuovo input.”

Nel momento in cui le competenze richieste per svolgere un determinato lavoro sono ridotte alla ripetizione di procedure standard, l’IA può addirittura risultare più efficiente e meno “onerosa” di un manager umano. L’algoritmo non si lamenta, non chiede pause caffè e, in linea di principio, può lavorare 24 ore su 24.

Questo fenomeno è già stato osservato in altri ambiti: si pensi ai sistemi di robotic process automation (RPA) che gestiscono processi amministrativi ripetitivi con altissima precisione (van der Aalst et al., 2018). Perché non dovrebbe accadere qualcosa di simile con livelli di middle-lower management che, di fatto, si limitano a trasmettere istruzioni dall’alto verso il basso?

Il “buon manager” rischia anch’egli?

La seconda categoria di manager – quelli proattivi, capaci di interpretare bisogni e aspettative dell’azienda – potrebbe sembrare inizialmente più al sicuro. In realtà, bisogna considerare che molte attività manageriali non consistono soltanto nel “dire cosa fare”, bensì nel tradurre gli obiettivi e le politiche aziendali in azioni concrete, interpretando correttamente segnali e indicazioni a volte implicite.

La presenza di Large Language Model (LLM) sempre più sofisticati (ad es. ChatGPT, GPT-4, Bard, ecc.) potrebbe rendere obsoleta una parte di questo processo di “interpretazione”, poiché le IA linguistiche hanno già mostrato una notevole capacità di “comprendere” il contesto e generare risposte coerenti con obiettivi anche complessi (Brown et al., 2020). Se l’azienda fornisce linee guida e strategie in forma digitale, un LLM ben allenato potrebbe essere in grado di tradurre tali istruzioni in proposte operative e piani di gestione.

Ne consegue che il manager che si limita a esercitare una buona capacità interpretativa, ma non possiede vere competenze distintive (visionarie, innovative, empatiche, ecc.), rischia di regredire al ruolo di un “mero esecutore qualificato”. A quel punto, i vantaggi rispetto a un’IA potrebbero ridursi sensibilmente.

E il “grande manager”? Rischi e opportunità

Il manager “strategico e visionario” appare, sulla carta, meno soggetto alla sostituzione: la sua forza sta nella capacità di intuire strade non ancora battute, di creare connessioni originali e di dare senso a informazioni provenienti da fonti molteplici, anche contraddittorie. L’IA, per quanto evoluta, ragiona generalmente su schemi già esistenti, estrapolando pattern da dataset immensi ma pur sempre storicizzati (Agrawal, Gans & Goldfarb, 2018).

Ciò non significa che i “grandi manager” siano del tutto al riparo dal fenomeno: bisogna considerare che, spesso, chi detiene la proprietà dell’azienda o chi si trova ai vertici C-level (che talvolta coincidono con i manager stessi) potrebbe iniziare a fare uso di strumenti di IA senza una piena comprensione dei limiti e delle insidie di tali tecnologie. Questo può dar luogo a conflitti insanabili qualora il manager proponga soluzioni basate su esperienza umana, creatività e visione, mentre la proprietà si affidi ciecamente a un software di IA, ritenuto erroneamente “onnisciente” (Harvard Business Review, 2019).

Tuttavia, in un contesto ben gestito, l’IA può diventare un alleato del grande manager, supportandone l’analisi dei dati e la verifica di ipotesi strategiche. In questo senso, l’IA opera come “amplificatore” delle capacità manageriali, permettendo di prendere decisioni più consapevoli e rapide (Shrestha, Ben-Menahem & von Krogh, 2019). Il manager rimane la figura chiave per integrare informazioni, guidare il cambiamento organizzativo e interagire in modo empatico con il proprio team.


Automazione: opportunità o minaccia?

La discussione su IA e sostituzione dei ruoli manageriali rientra in un discorso più ampio sull’automazione del lavoro. Storicamente, ogni ondata di innovazione tecnologica ha messo a rischio alcune mansioni e ne ha create altre, con il risultato di trasformare il mercato del lavoro anziché distruggerlo completamente (Autor, 2015). Il World Economic Forum (2020) evidenzia che, entro pochi anni, l’IA e l’automazione creeranno milioni di nuovi posti di lavoro, specialmente in aree ad alta intensità di conoscenza (data science, project management avanzato, ecc.), ma ne renderanno superflui altrettanti in ambiti più semplici e ripetitivi.

Per i manager, ciò si traduce in un’esigenza di riqualificazione (reskilling e upskilling), volta a sviluppare competenze che l’IA non è ancora in grado di replicare facilmente:

  • Leadership empatica: la capacità di interagire con le persone e motivarle, tenendo conto di dinamiche emotive e relazionali (Goleman, Boyatzis & McKee, 2002).
  • Creatività e innovazione strategica: la dote di immaginare soluzioni fuori dagli schemi e di cogliere opportunità di mercato.
  • Pensiero critico e problem solving complesso: saper affrontare situazioni non strutturate che richiedono interpretazioni multiple e decisioni incerte.
  • Gestione del cambiamento: saper orchestrare trasformazioni organizzative, allineando team e stakeholders, spiegando la “vision” e affrontando le resistenze interne (Kotter, 1996).

Conclusioni

L’avvento dell’Intelligenza Artificiale in ambito aziendale pone sfide che vanno oltre la semplice sostituzione di mansioni ripetitive. Se, da un lato, il manager “funzionale” – colui che si limita a eseguire istruzioni senza iniziativa – può essere facilmente sostituito da un software ben progettato, dall’altro lato il “buon manager” e il “grande manager” restano figure che, per ora, conservano un vantaggio competitivo. Tuttavia, anche questi ruoli potrebbero mutare radicalmente, qualora l’IA arrivasse a gestire in modo ancora più sofisticato le dinamiche decisionali interne all’azienda.

È bene ricordare che la tecnologia, di per sé, non è né buona né cattiva, ma il suo impatto dipende fortemente dal contesto e dal modo in cui viene implementata. Ancora una volta, le innovazioni rischiano di “fare danno” soprattutto alle fasce meno competenti della forza lavoro, lasciando spazio a chi possiede competenze di più alto livello e, soprattutto, un’umanità che la macchina non può replicare.

Nel prossimo futuro, anziché chiederci se “ne resterà solo uno” tra manager e IA, dovremmo forse interrogarci su come manager e IA possano collaborare in modo sinergico. È la capacità umana di immaginare, di relazionarsi e di attribuire significato a dati e informazioni che può fare la differenza. In quest’ottica, la sfida è formare e valorizzare figure manageriali in grado di integrare i potenti strumenti che l’IA mette a disposizione, senza diventarne meri esecutori.

Infine, è fondamentale non dimenticare che:

Per il manager che vuole soluzioni e non problemi

“A manager that is not a proactive part of the solution is part of the problem.”


Riferimenti bibliografici

  • Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press.
  • Autor, D. H. (2015). Why Are There Still So Many Jobs? The History and Future of Workplace Automation. Journal of Economic Perspectives, 29(3), 3–30.
  • Bass, B. M., & Avolio, B. J. (1993). Transformational Leadership and Organizational Culture. Public Administration Quarterly, 17(1), 112–121.
  • Brown, T. et al. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems (NeurIPS).
  • Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton & Company.
  • Davenport, T. H., & Kirby, J. (2016). Only Humans Need Apply: Winners and Losers in the Age of Smart Machines. Harper Business.
  • Fayol, H. (1949). General and Industrial Management. Sir Isaac Pitman & Sons.
  • Goleman, D., Boyatzis, R., & McKee, A. (2002). Primal Leadership: Realizing the Power of Emotional Intelligence. Harvard Business Press.
  • Harvard Business Review (2019). Artificial Intelligence for the Real World. Harvard Business Review, 97(1), 108–116.
  • Kotter, J. P. (1990). A Force for Change: How Leadership Differs from Management. Free Press.
  • Kotter, J. P. (1996). Leading Change. Harvard Business Review Press.
  • Mintzberg, H. (1973). The Nature of Managerial Work. Harper & Row.
  • Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2019). Organizational Decision-Making Structures in the Age of Artificial Intelligence. California Management Review, 61(4), 66–83.
  • van der Aalst, W. M. P., Bichler, M., & Heinzl, A. (2018). Robotic Process Automation. Business & Information Systems Engineering, 60(4), 269–272.
  • World Economic Forum (2020). The Future of Jobs Report. Ginevra: WEF.

mercoledì 5 marzo 2025

 

The Remote Ruse: How Cybercriminals Exploit Remote Monitoring and Management Tools (And How Not to Be Their Next Comedy Act)

🚨 Your IT Department’s Worst Nightmare: When RMM Tools Go Rogue! 🚨

Imagine this: Your IT team is chilling, sipping their well-earned coffee, when suddenly—BOOM! Cybercriminals have just hijacked your Remote Monitoring and Management (RMM) tools, turning your secure network into their personal playground.
RMM tools are supposed to help IT teams keep things running smoothly. But in the wrong hands? They become digital skeleton keys, unlocking systems, deploying malware, and causing mayhem faster than you can say, “Who clicked that phishing link?” 😱
In my latest article, I take a deep dive into how hackers manipulate legitimate RMM tools like AnyDesk, TeamViewer, and ScreenConnect to infiltrate organizations, steal data, and distribute ransomware. I also explore how businesses can detect, control, and neutralize these threats—all with a sprinkle of humor, because let’s face it, cybersecurity could use a laugh.
🔎 Curious about how these attacks unfold?
🔐 Want to know how to protect your enterprise from RMM-based exploits?
Check out the full article here 👉
💬 Let me know in the comments: Have you ever seen RMM tools being abused in the wild? What security measures do you recommend?

Yes another human factor essay

Welcome, dear reader, to the thrilling saga of cybercriminals and their mischievous antics with Remote Monitoring and Management (RMM) tools! If you thought your IT team had a tough job, wait until you see how these digital tricksters turn enterprise security into their own personal playground.

You see, RMM tools were supposed to be the heroes of the story, making IT management easier and businesses more efficient. But in a classic plot twist worthy of a bad Hollywood movie, cybercriminals figured out they could use these tools to break into networks, causing chaos faster than a cat discovering a Christmas tree. So, let’s pull back the curtain on this digital clown show and see how these attackers manage to slip their way into our systems, often with the elegance of a banana-peel slip.

Imagine RMM tools as the Swiss Army knife of IT professionals. They can do everything: remote access, system monitoring, software deployment, and even making coffee! (Okay, maybe not that last one—yet.) But in the hands of a cybercriminal, these tools become the ultimate cheat codes for hacking their way into corporate systems with the ease of a teenager installing Minecraft mods. Here’s how the attack usually unfolds, in classic “oops, we’re breached” fashion:

Attackers love phishing emails like a kid loves candy. They send a fake IT alert, an urgent “security update,” or some other nonsense that convinces someone to click on a link. Boom! The attackers are in. Once inside, the attackers deploy a compromised RMM tool, giving them VIP access to the victim’s system. This is like handing over your house keys to a burglar and saying, “Make yourself at home!” Using the RMM tool, the attacker scurries through the network like a raccoon raiding garbage cans, stealing data, planting malware, and generally making life miserable for IT teams. No cybercriminal wants to get caught, so they erase logs, disable security software, and leave false clues to make investigators chase their own tails. It’s like a villain disappearing into a smoke cloud, except the smoke is your missing company data.

Cybercriminals don’t need sophisticated hacking skills when they can just trick people into downloading malware for them! Their favorite tactics include phishing emails that claim, “Your account has been compromised! Click here to secure it.” Spoiler: clicking there is exactly how your account gets compromised. Another classic is pretending to be tech support, convincing users to install an RMM tool so they can “fix” their computers—except they’re actually fixing them into becoming part of a botnet army. Then there’s the old Trojanized software trick, where malware is bundled with a legitimate application, so what you think is useful turns into a cyber disaster.

Attackers love to abuse legitimate RMM tools because they don’t trigger alarms like traditional malware. AnyDesk is a favorite among scammers, who use phishing to trick users into granting remote access. TeamViewer has been misused to provide stealthy access, and SolarWinds Orion was famously hijacked in a supply chain attack that compromised thousands of networks, including government agencies. ScreenConnect (ConnectWise Control) has also been repurposed by cybercriminals to deploy ransomware, proving that even IT tools can have an evil twin.

Monitoring RMM traffic is like trying to spot a ninja at a costume party—it’s tricky, but not impossible if you know what to look for. For example, AnyDesk traffic usually runs on port 6568, and a suspicious packet might look like this:

Source IP: 192.168.1.100
Destination IP: 185.123.456.789
Protocol: TCP
Destination Port: 6568 (AnyDesk default port)
Payload: Encrypted RMM communication (which could mean trouble!)

If you notice unusual connections to external IPs on these known RMM ports, congratulations! You may have just spotted an unauthorized remote session.

Let’s be real—most security breaches start with someone clicking on something they shouldn’t. This is why a good cybersecurity strategy isn’t just about fancy tools; it’s about training people to recognize scams. Employees need to be suspicious of unsolicited tech support requests. If Bob from IT suddenly sounds like he’s calling from a cave in Siberia, maybe don’t give him remote access. Phishing simulations should be run regularly to keep everyone sharp, and a little workplace paranoia about security never hurts—better to double-check than to become the next victim.

RMM tools are incredibly useful, but when cybercriminals get hold of them, they turn into weapons of mass IT destruction. By monitoring network traffic, controlling RMM usage, and educating users to spot scams, businesses can prevent their IT infrastructure from becoming the next headline in a cyberattack scandal. Stay vigilant, stay skeptical, and whatever you do, don’t click that suspicious link from a “helpful” stranger!